CEMAT: The leading process control system for the cement industry.

www.siemens.com/cemat
CEMAT: The decisive boost to your competitive edge

In the cement industry, reliable processes are crucial to success.

To stay competitive, a plant must function smoothly and efficiently at all times, delivering the best possible ROI (Return on Investment) at the lowest possible cost. With CEMAT, Siemens offers a highly innovative distributed control system (DCS) that helps the cement industry not only stay competitive, but improve competitiveness over the long term – by optimizing productivity, plant availability, and energy efficiency.

The leading DCS for the cement industry

CEMAT is much more than just a database with a few cement-specific modules. It contains a complete philosophy on how to operate a cement plant, how to make diagnoses to keep downtimes to a minimum in the event of a plant problem, and how to interconnect the drives, dampers, belt conveyors, and measuring values from the plant with each other. Because these elements have all been preconfigured and proven over many years, engineering is fast and reliable. Also, there is a comprehensive database of cement-specific solutions that eliminates redundant tasks such as creating software and interconnecting that have already been worked out in other plants and scenarios.

Proven and established worldwide

CEMAT is specifically designed for cement plants and has been proven in harsh operating environments over many years of service. Our groundbreaking DCS is well accepted in the cement industry, and the number of users is growing all the time. CEMAT has now been on the market for more than 35 years, and is firmly grounded in our extensive expertise in the field of cement production and the experience of many cement manufacturers worldwide. CEMAT is based on SIMATIC PCS 7, our proven distributed control system, and offers a unique open architecture for modern, future-proof, and economical solutions for the cement industry. It makes use of all features and functions of SIMATIC PCS 7 and adds additional industry-specific functionality. In addition to the standard languages of SIMATIC PCS 7 (English, German, French, Italian, and Spanish), Chinese and Russian are also available for the operator interface. If a different language is required, a translation tool will assist you in adapting the screens.

Designed with the future in mind

Because the life cycle of a cement plant is much longer than the service life of a single version of a control system, it is essential that the strategy behind the development of a control system remains innovative. CEMAT is designed for the future to guarantee compatibility with ongoing innovations. The latest version is even compatible with all previous versions dating back to version 1.8, which was released in 1978. This means that older PLC programs can either be operated and visualized on the latest version of the operating system or upgraded to the current and later versions without difficulty. This saves you money when investing in new plant equipment or during system upgrades.
Designed to meet the key demands of the cement industry

Developed in close cooperation with leading cement manufacturers worldwide, CEMAT delivers everything necessary to seamlessly meet the most relevant demands of the industry: productivity, plant availability, and energy efficiency.

More productivity
CEMAT ensures a significant boost in productivity throughout the entire life cycle of your plant. In the production phase, self-descriptive standard faceplates guarantee easy handling for the operator. Detailed fault indication with high performance plausibility logic ensures fast fault location for minimized downtimes. The SIMATIC PCS 7 Asset Management function and the CEMAT Maintenance information allow the realization of innovative maintenance strategies. The complete process can be operated and monitored via Internet/Intranet. With CEMAT, you can be sure that there will be no unreasonable start-up of drives or groups because of detailed status reports prior to all starts.

Faster engineering
Predefined modules ensure simple and fast engineering, and rigorous guidance of the engineer during the programming process avoids patchworking of the software. And thanks to standard interfaces between the CEMAT modules, there is also a very low probability of programming errors. With CEMAT, you profit from proven software that has been designed for the specific requirements in your industry. The high quality of the user software ensures fast commissioning.

Higher availability
The availability of your equipment can be increased with preventive maintenance. Condition monitoring functions can be easily integrated and displayed. Standard faceplates are available for several drive applications, including MultiDrive and SIPLUS Condition Monitoring System. Increased plant performance, reduced downtime, and cost savings can be achieved by installing condition monitoring systems. Integration of this functionality into the process control system makes plant-wide information available and documents the status of all equipment. One of the features of SIMATIC PCS 7 is the Asset Management. This optional package allows you to easily realize and optimally implement innovative maintenance strategies. Detailed diagnostics of all process control components reduces downtimes in the case of problems or other events and minimizes production losses.

Highest plant efficiency
The latest version of CEMAT offers you multiple innovative functions designed to provide higher plant availability and productivity – for example, enhanced signaling and diagnostic functions reduce plant downtimes as well as operating and maintenance costs.
Integration of technological modules – for even more effective production

Technological modules such as a mill and kiln optimization system, a kiln shell scanner, or a quality control system can easily be integrated into CEMAT and can be managed from the CEMAT Operator console, too. Standard interfaces are available to enable communication with Siemens SIMATIC IT or packages from system integrators.
Advantages at a glance

- Small initial investment and low lifecycle costs
- State-of-the-art technology lasts well into the future
- Increased output, assured quality, reduced energy consumption and pollution
- Data transparency up to the management level in real time
- No expensive external programming specialists required
- Full transfer of technical knowledge
- Continual supplier support not necessary
- High quality and efficiency through user software
- High system availability on a consistent basis
- Diagnostic functions for fast fault localization

Reducing downtime
Clear and detailed indication of faults, warnings and interlocking conditions are available for any plant object and allows the operator to react quickly to potential errors.

Creating significant and clear fault messages
Alarm messages are only created for “active” alarm sections and suppressed if not significant, as for example in local mode or in case of a power supply failure.

Logging all operations
All operator actions depend on authorizations and are logged in the message system.

Avoiding trial starts
Group status call displays faults, warnings and interlocks also prior to start.

Finding bypassed/simulated signals
Indication of simulations within a group or for the complete PLC.

Informing control room and management personnel
Operators and shift manager can identify faults rapidly and coordinate repairs and starting sequences.

Providing information for all plant objects
Location information, I/O information as well as additional documents such as panel or MCC drawings, operation descriptions can be linked to the plant object and are accessible online on the operation station.

Fault analysis and statistics
Via maintenance, dialog weak points can be analyzed and eliminated.
Graphic system architecture

The entire hardware structure of the process control system is hierarchically displayed at the maintenance station.

The automatic generation of hierarchical diagnostic images reduces both engineering and maintenance costs when, for example, changes need to be made in the plant.
With SIMATIC PCS 7 and CEMAT, all components that can be diagnosed – like the PCs, bus components, automation systems, and the entire decentralized periphery such as I/O modules and intelligent field devices – are integrated with Asset Management.

As a result, all process control components of the plant can be monitored online and in real time, allowing the evaluation of their current status.
Tailored to your specific needs

CEMAT expands SIMATIC PCS 7 into a process control system capable of meeting all the needs of the cement industry. CEMAT makes use of all features of SIMATIC PCS 7 and adds the functionalities of plant operation and fault diagnosis. Special function blocks and faceplates are designed to manage all the kinds of operation, interlocking, and supervision functions that are typically required in cement plants. The functions are preconfigured and proven over many years in use. This makes engineering easy, fast, and reliable. Without sacrificing any of the features that users have learned to appreciate in previous CEMAT versions, the latest version comes with new features and the latest technology.

Features and functions for advanced, integrated automation
CEMAT offers many unique features that make the operation of a cement plant simpler and more efficient: In the process display, each element is represented by a block icon that shows the status, the operating mode, the plant identifier, and the most important values.

Operator Faceplate
The Operator Faceplate shows more detailed information, such as comments, fault status, operator permission, operating conditions, and simulations, and it provides buttons to allow the operation of the equipment (Start, Stop, Selection, Set Point, etc). Invocation buttons open secondary dialogs that provide additional information:
Diagnosis Dialog
The diagnosis dialog shows the inputs and outputs of the block, including status information, interlocking conditions, and faults. It also permits the modification of process parameters.

The interlocking condition encompasses the signal status and the capability for a “block jump.” This means that the faceplate of the connected block can be opened directly by a click on the interface. Signals and signals states can be tracked across block boundaries, which allows the operator to react quickly to potential errors.

Information Dialog
The information dialog provides additional information about hardware installation location, I/O addresses, MCC data, operator notes and object-related messages.

An open user interface within the information dialog offers access to sound files, videos, PDF descriptions, and CAD drawings.

Maintenance Dialog
The maintenance dialog shows the statistic values like operating hours and downtime from faults and maintenance data information (maintenance settings, status and device information) for drives, dampers, and valves.
Group and Route Modules

Drives can be started and stopped in automatic mode via the group module, in single-start mode (individually), or in local mode via a local switch in the field.

Different options are available and allow easy adaptations to the customer’s requirements.

Group Module
The group module is a superordinated module for starting and stopping and for monitoring technologically grouped plant sections. The group module enables the visualization of the operational conditions of a plant section displayed as a status display, and a summarizing indication for faults, warnings, and interlocks.

Route Module
The route module is a module for the selection of transport directions within a group. The route module allows the visualization of the operational conditions of a transport direction within a plant section, displayed as a status display and a summarizing indication for faults, warnings, and interlocks.
Group and route provide additional diagnostic functions
• The status call of the group and routes can be used to list all existing faults, warnings, or interlocking conditions of the drives, measuring values, and process signals assigned to this group or route, even if this group/route is not active.
• The object list shows all elements linked to the group, including operating status and indication of simulation/bypass.
• The highlight function marks all objects belonging to a group or route.
• The group faceplate can be opened directly via the related objects.
Process signals can be simulated, for example, during commissioning. In order to detect the simulations in the system, a function is provided to list all simulations of bypassed process signals within the AS.

Message System
In the CEMAT message system, each message contains the following information:
• Incoming date/time
• Plant identifier
• Fault type
• Fault text (block comment)
• Fault class (P = process, E = electrical, M = mechanical, S = safety emergency off)

The alarm dialog shows all messages created by the specific object (events and operations).

Trend Control
Alarms can be filtered for fault type, plant identifier, fault class, section, and time, or, for example, exported in order to better analyze critical plant states.

CEMAT trend controls allow the online configuration of trend windows, including selection of facility for day of the week and time range.

Web client diagnostic information via Web server enables easy maintenance data transmission via LAN, SMS and e-mail.
Intelligent process optimization with APC
Advanced Process Control

With CEMAT you benefit from an integrated tool for greater efficiency in process management and plant operation. The standard library includes numerous blocks and model solutions for advanced control functions. These lay the ideal foundation for the effective application of APC methods – even in small and medium-sized plants.

Simple, economical, ready to use

Thanks to Advanced Process Control, even complex situations can be mathematically described with process parameters or variables – and used for automatic, flexible plant operation. APC provides process management that can significantly reduce the consumption of energy, consistently maintain high quality standards, and contribute to more flexible production. With CEMAT, even the most advanced APC applications can be easily and cost-effectively implemented: the standard library contains numerous high-level controls for APC functions that manage a large portion of the sophisticated control tasks used in the process industry. With model-based predictive control (MPC), processes like the grinding mill can be optimized.

Operating and monitoring the process easily via Internet/Intranet

With SIMATIC PCS 7 Web, you can control the entire process via Internet/Intranet from any commonly available PC using Internet Explorer. The system automatically converts the selected images, and thus requires only minimal engineering effort.

Safe, worldwide access via the Web

User-specific passwords, firewalls, and individual application concepts protect the system from unauthorized interventions. Up to 50 PCS 7 Web clients can simultaneously access a SIMATIC PCS 7 OS Web server, enabling remote control from diverse locations.

Increased Plant Efficiency

• Standard deviations are minimized – and can be adjusted more quickly if required
• Throughput is significantly increased (typically by 1–5 percent) – with consistent product quality
• Energy consumption is substantially reduced (typically by 3–10 percent) – as is the use of raw materials
• Manual interventions will be significantly reduced – which leads to a reduction in operator stress
• Transitions between different operating points are optimized, which means faster operating point changes and less non-production time
• The lifetime of the plant with its existing automation increases – with less maintenance work
• Process understanding is improved due to modeling and prediction
Energy efficiency

As a partner to industry, we also have energy efficiency in our sights. We offer competent advice and goal-oriented solutions to help the cement industry reduce its energy costs and minimize pollutant emissions so that the production process becomes just as energy-efficient and environmentally acceptable as the end product itself.

Power Management

CEMAT enables processes to be continually optimized, that includes the use of energy. A typical example is the combustion process in rotary kilns. Already integrated in our innovative DCS: Intelligent Power Management, which determines exactly how much energy each unit is using and so reveals the “energy wasters” that can be replaced by more efficient systems. Another important function is monitoring energy imports, and staying within contractual limits by, for example, selectively switching off defined parts of the plant.

Waste Heat Recovery

Together with other well-known plant constructors, we assist the cement industry with the planning and construction of innovative heat recovery plants that pay for themselves in a very short time. We also contribute to optimizing the operation of your plant by supplying the right measuring and automation equipment. The cement plant and power plant are monitored and controlled from a common control room by the SIMATIC PCS 7 process control system, without the need for additional operating personnel. This provides integrated automation throughout the entire plant.

Process Optimisation/Fuel Manager

For cement plants using several alternative fuels, the CEMAT system can be extended to manage different fuels with different calorific values. With a fuel manager, the kiln gets always the right amount of energy necessary for the burning process. This helps avoid overheating of the kiln and dramatically reduces operation costs. CEMAT includes several function blocks that enable the process engineer to optimize the clinker burning process as well as the grinding process. With stable and optimized processes, the entire cement plant will become much more efficient.
Get more information:
www.siemens.com/cemat

We are happy to answer your questions regarding our distributed control system CEMAT.
Please send us an email:
cemat.industry@siemens.com

The information provided in this brochure contains merely general descriptions or characteristics of performance which in actual case of use do not always apply as described or which may change as a result of further development of the products. An obligation to provide the respective characteristics shall only exist if expressly agreed in the terms of contract.

All product designations may be trademarks or product names of Siemens AG or supplier companies whose use by third parties for their own purposes could violate the rights of the owners.